首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2973篇
  免费   202篇
  国内免费   289篇
化学   189篇
晶体学   2篇
力学   126篇
综合类   51篇
数学   2482篇
物理学   614篇
  2024年   3篇
  2023年   24篇
  2022年   36篇
  2021年   46篇
  2020年   64篇
  2019年   66篇
  2018年   76篇
  2017年   77篇
  2016年   98篇
  2015年   60篇
  2014年   149篇
  2013年   237篇
  2012年   122篇
  2011年   176篇
  2010年   158篇
  2009年   158篇
  2008年   236篇
  2007年   201篇
  2006年   190篇
  2005年   162篇
  2004年   140篇
  2003年   140篇
  2002年   140篇
  2001年   98篇
  2000年   88篇
  1999年   93篇
  1998年   95篇
  1997年   63篇
  1996年   54篇
  1995年   37篇
  1994年   29篇
  1993年   20篇
  1992年   15篇
  1991年   6篇
  1990年   19篇
  1989年   12篇
  1988年   8篇
  1987年   3篇
  1986年   9篇
  1985年   10篇
  1984年   9篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1973年   3篇
  1936年   2篇
排序方式: 共有3464条查询结果,搜索用时 52 毫秒
51.
《Physics letters. A》2020,384(22):126428
We determine the classical diffusion of two dimensional Dirac-like quasiparticles, in the presence of conserving spin disorder (scattering off electric impurities) and non-conserving spin disorder (scattering off magnetic impurities). We use the Kubo formula for the conductivity tensor and employ diagrammatic perturbation theory to calculate the vertex correction and the renormalisation of the current operator for both electric and magnetic scattering. Scattering off electric impurities is isotropic and the current operator renormalised to two times the bare current operator irrespective of the direction of the dynamics, as usual for Dirac-like fermions. For magnetic scattering the renormalisation of the current operator depends on the direction of the dynamics and on the polarisation of the magnetic impurities, making the system anisotropic. We calculate the anisotropic magnetoresistance (AMR) and analyse it as a function of the ratio of the strength of the electric to the magnetic scattering potentials, for short range Gaussian correlation.  相似文献   
52.
53.
54.
55.
《Current Applied Physics》2020,20(2):237-243
Three popular optical analysis methods (the transfer-matrix method, the Tinkham formula, and Beer's law) have been used for analyzing the optical spectra of thin films. While the transfer-matrix method is an accurate method, the Tinkham formula and Beer's law are approximate methods. Here we investigated the three methods using measured transmittance spectra of insulating transition-metal dichalcogenide (TMD) thin films on a quartz substrate. Three different semiconducting 2H-TMD systems (MoS2, MoSe2, and MoTe2) were measured and analyzed. The optical conductivities obtained from the measured transmittance spectra using the transfer-matrix method and Tinkham formula and the absorption coefficients obtained using the transfer-matrix method and Beer's law were compared. The comparisons show some discrepancies. The reasons for the discrepancies between the results obtained via the two different methods were examined and the application limitations of the Tinkham formula and Beer's law were discussed.  相似文献   
56.
This paper deals with the principal eigenvalue of discrete p-Laplacian on the set of nonnegative integers. Alternatively, it is studying the optimal constant of a class of weighted Hardy inequalities. The main goal is the quantitative estimates of the eigenvalue. The paper begins with the case having reflecting boundary at origin and absorbing boundary at infinity. Several variational formulas are presented in different formulation: the difference form, the single summation form, and the double summation form. As their applications, some explicit lower and upper estimates, a criterion for positivity (which was known years ago), as well as an approximating procedure for the eigenvalue are obtained. Similarly, the dual case having absorbing boundary at origin and reflecting boundary at presented at the end of Section 2 to infinity is also studied. Two examples are illustrate the value of the investigation.  相似文献   
57.
We revisit the derivation of the microscopic stress, linking the statistical mechanics of particle systems and continuum mechanics. The starting point in our geometric derivation is the Doyle–Ericksen formula, which states that the Cauchy stress tensor is the derivative of the free-energy with respect to the ambient metric tensor and which follows from a covariance argument. Thus, our approach to define the microscopic stress tensor does not rely on the statement of balance of linear momentum as in the classical Irving–Kirkwood–Noll approach. Nevertheless, the resulting stress tensor satisfies balance of linear and angular momentum. Furthermore, our approach removes the ambiguity in the definition of the microscopic stress in the presence of multibody interactions by naturally suggesting a canonical and physically motivated force decomposition into pairwise terms, a key ingredient in this theory. As a result, our approach provides objective expressions to compute a microscopic stress for a system in equilibrium and for force-fields expanded into multibody interactions of arbitrarily high order. We illustrate the proposed methodology with molecular dynamics simulations of a fibrous protein using a force-field involving up to 5-body interactions.  相似文献   
58.
We prove a generalization of the Kibble–Slepian formula (for Hermite polynomials) and its unitary analogue involving the 2D Hermite polynomials recently proved in [16]. We derive integral representations for the 2D Hermite polynomials which are of independent interest. Several new generating functions for 2D q-Hermite polynomials will also be given.  相似文献   
59.
Recently there has been a renewed interest in asymptotic Euler–MacLaurin formulas, because of their applications to spectral theory of differential operators. Using elementary means, we recover such formulas for compactly supported smooth functions on intervals, polygons, and three-dimensional polytopes, where the coefficients in the asymptotic expansion are sums of differential operators involving only derivatives of the function in directions normal to the faces of the polytope. Our formulas apply to wedges of any dimension.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号